Search results

Search for "energy distribution" in Full Text gives 37 result(s) in Beilstein Journal of Nanotechnology.

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • and energy of the incoming ion and on the mass of the target atom. It may be expressed as the spatial distribution of the energy transferred/deposited within the target [27][28]. Sometimes the energy distribution on the target atoms at the surface may be sufficient to overcome binding energies so as
  • processes (i.e., thermal diffusion and ion-induced diffusion) [32]. This approach is based on the linear cascade model and Gaussian approximation of energy distribution as developed by Sigmund [26] to describe ion–atom collisions inside the target. Rutherford backscattering spectrometry (RBS) studies in the
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • hydrochloric acid and/or chloromethane plays an important role in these fragmentation processes. In FEBID, the effective damage yield [28][49] for a specific precursor will be a convolution of the energy distribution of the electrons involved (i.e., of the primary, secondary, and inelastic scattered electrons
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • ultimate conversion of electron scattering into heat. The energy distribution of hot carriers (which decides the relaxation times) depends on the electronic band structure [78], particle size, density of states, and the geometry of nanoparticles [79]. Figure 12 shows the vast differences in the population
PDF
Album
Review
Published 27 Mar 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • by the CPD, is applied to the semiconductor sample. Therefore, the surface potential of the semiconductor is fixed at a certain energy, and only the surface state near the Fermi level of the surface is reflected in CPD measurements, making measurement of the energy distribution of the interface
  • states within the bandgap difficult. Thus, a method for measuring the energy distribution of the interface states must be developed. Kelvin probe force spectroscopy (KPFS) or electrostatic force spectroscopy is a technique that enables energy spectroscopy of interface states in the semiconductor bandgap
  • the localized energy levels of insulating layers on semiconductor surfaces has been reported to be feasible [22]. Therefore, we can expect that the KPFS method described above can be combined with high–low KPFM to measure the energy distribution of the interface states. In this study, we propose high
PDF
Album
Full Research Paper
Published 31 Jan 2023

Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes

  • Max Mennicken,
  • Sophia Katharina Peter,
  • Corinna Kaulen,
  • Ulrich Simon and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2022, 13, 219–229, doi:10.3762/bjnano.13.16

Graphical Abstract
  • -complex wire devices and decline with ascending voltage from EA = 75 meV at 0.1 V to 64 meV at 1 V (see also Supporting Information File 1, Figure S7). This small decline in EA can be attributed to the broadening of the electron energy distribution at the Fermi level, that is, the temperature-dependent
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2022

Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6)

  • Po-Yuan Shih,
  • Maicol Cipriani,
  • Christian Felix Hermanns,
  • Jens Oster,
  • Klaus Edinger,
  • Armin Gölzhäuser and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2022, 13, 182–191, doi:10.3762/bjnano.13.13

Graphical Abstract
  • electrons (SEs) are produced [8][9]. Usually, the energy distribution of these SEs has a peak intensity well below 10 eV, with contributions close to 0 eV and falls rapidly off towards higher energies [9][10]. The secondary electrons are very reactive species, and in fact, the decomposition of the precursor
  • -induced processes. The secondary electron energy distribution is not largely influenced by the primary electron energy [10]. However, in a W(CO)6 FEBID deposition at 5 keV, Mulders et al. [59] reported close to 37 atom % of W and C and about 27% O at room temperature. At about 150 °C, they reported about
PDF
Album
Full Research Paper
Published 04 Feb 2022

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • evaluated by means of analytical models [41]. The obtained spatial and energetic distributions of PE, SE, and BSE are tabulated. The spatial distribution of electrons is defined on a cubic grid covering the whole simulation box; the grid consists of voxels with the size of 1 nm. The energy distribution of
PDF
Album
Full Research Paper
Published 13 Oct 2021

Controlling the electronic and physical coupling on dielectric thin films

  • Philipp Hurdax,
  • Michael Hollerer,
  • Larissa Egger,
  • Georg Koller,
  • Xiaosheng Yang,
  • Anja Haags,
  • Serguei Soubatch,
  • Frank Stefan Tautz,
  • Mathias Richter,
  • Alexander Gottwald,
  • Peter Puschnig,
  • Martin Sterrer and
  • Michael G. Ramsey

Beilstein J. Nanotechnol. 2020, 11, 1492–1503, doi:10.3762/bjnano.11.132

Graphical Abstract
  • function decrease and, therefore, the desorption of charged molecules happens already within the desorption regime of the neutral molecules. This might be explained by the spontaneous discharging as a result of the thermal energy distribution, enabling desorption as a neutral molecule. Conclusion While
PDF
Album
Full Research Paper
Published 01 Oct 2020

Fabrication of Ag-modified hollow titania spheres via controlled silver diffusion in Ag–TiO2 core–shell nanostructures

  • Bartosz Bartosewicz,
  • Malwina Liszewska,
  • Bogusław Budner,
  • Marta Michalska-Domańska,
  • Krzysztof Kopczyński and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2020, 11, 141–146, doi:10.3762/bjnano.11.12

Graphical Abstract
  • hollow nanostructures show a broad and relatively strong absorption in the whole investigated spectral range, which corresponds to over 60% of the energy in the solar energy distribution [29]. The changes observed in the optical properties of the Ag-modified TiO2 HSs compared to Ag@TiO2 CSNs are related
PDF
Album
Supp Info
Letter
Published 10 Jan 2020

Graphynes: an alternative lightweight solution for shock protection

  • Kang Xia,
  • Haifei Zhan,
  • Aimin Ji,
  • Jianli Shao,
  • Yuantong Gu and
  • Zhiyong Li

Beilstein J. Nanotechnol. 2019, 10, 1588–1595, doi:10.3762/bjnano.10.154

Graphical Abstract
  • panel), and the corresponding kinetic energy distribution pattern (right panel). The insert in the left panel shows the formation of initial cracks at the impact area; (b) stress distribution pattern right after perforation at 5.0 ps; and (c) the final atomic configuration at 6.4 ps. Impact deformation
  • of different GYs under an impact velocity of 2 km/s. (a, b) Atomic configurations of β-GY: (a) von Mises atomic stress distribution pattern at a simulation time of 2.0 ps (left panel), and the corresponding kinetic energy distribution pattern (right panel); the insert in the left panel shows the
  • formation of initial cracks at the impact area; and (b) final atomic configuration after 4.9 ps. (c, d) Atomic configurations of γ-GY: (c) von Mises atomic stress distribution pattern at a simulation time of 20 ps (left panel), and the corresponding kinetic energy distribution pattern (right panel); the
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2019

Energy distribution in an ensemble of nanoparticles and its consequences

  • Dieter Vollath

Beilstein J. Nanotechnol. 2019, 10, 1452–1457, doi:10.3762/bjnano.10.143

Graphical Abstract
  • properties of such an “isothermal” ensemble can be predicted. The width of the energy distribution decreases with increasing particle size. This particle size dependence of the energy per particle controls phase fluctuations in the vicinity of the transformation temperature. Additionally, applying the
  • quantity determining the width of the energy distribution is the heat capacity of the particles. For these calculations, bulk data for the heat capacity were successfully applied. This leads to the conclusion that the data for heat capacity of nanoparticles are very close to the bulk values. Keywords
  • : energy distribution; isothermal ensemble; nanoparticle ensemble; normal distribution; particle size distribution; temperature distribution; Introduction General theoretical considerations about ensembles of nanoparticles assume that the ensemble is isothermal. To connect these theoretical considerations
PDF
Album
Full Research Paper
Published 19 Jul 2019

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • distribution, β being the standard deviation of the “backscattered” energy distribution and η being the ratio of forward scattered energy deposited to “backscattered” energy deposition in the resist. For values of R1 >> α, Equation 2 may be approximated to a linear relationship between ln Q and R12 (Equation 3
  • being the exposure dose required to clear out the resist from the centre of the doughnut due to the proximity effect, Qp being the threshold dose required for full clearance of the resist, R1 being the inner radius of the doughnut, α being the standard deviation of the forward-scattered deposited energy
PDF
Album
Review
Published 14 Nov 2018

Effective sensor properties and sensitivity considerations of a dynamic co-resonantly coupled cantilever sensor

  • Julia Körner

Beilstein J. Nanotechnol. 2018, 9, 2546–2560, doi:10.3762/bjnano.9.237

Graphical Abstract
  • . Furthermore, a slight asymmetry can be found in the curve which is due to the very different properties of the individual subsystems, and, consequently, leads to an asymmetric energy distribution in the coupled system which is reflected in the effective sensor properties. That is not only the case for the
PDF
Album
Supp Info
Full Research Paper
Published 25 Sep 2018

Tunable fractional Fourier transform implementation of electronic wave functions in atomically thin materials

  • Daniela Dragoman

Beilstein J. Nanotechnol. 2018, 9, 1828–1833, doi:10.3762/bjnano.9.174

Graphical Abstract
  • , i.e., if Ψ(x,y) = Ψ(x)exp(iκy), in the same potential energy distribution, such that the wave function is a solution of the equation where vF ≈ c/300 is the Fermi velocity. From Equation 6 it follows that, for slowly varying potential energy distributions, as assumed above, for which both components
  • now unidentified, manifestation of the Berry phase in graphene [9][16]. Please note that for both, 2DEGs and graphene, Lα does not depend on the wave-vector component along the y direction, but only on the energy and the parameters of the potential energy distribution. This means that the wave
  • simpler technological solution to achieve a parabolic potential energy distribution relies on segmented gate electrodes, composed of several metallic stripes with identical or different widths, as shown in Figure 2a and Figure 2b, respectively; the distance between electrodes, d, is assumed constant. In
PDF
Album
Full Research Paper
Published 19 Jun 2018

Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition

  • Ragesh Kumar T P,
  • Paul Weirich,
  • Lukas Hrachowina,
  • Marc Hanefeld,
  • Ragnar Bjornsson,
  • Helgi Rafn Hrodmarsson,
  • Sven Barth,
  • D. Howard Fairbrother,
  • Michael Huth and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2018, 9, 555–579, doi:10.3762/bjnano.9.53

Graphical Abstract
  • 0 eV (Figure 4a). At the PBE0/ma-def2-TZVP level of theory the threshold for this channel is found to be 1.2 eV, and we thus attribute this low intensity contribution to the high energy tail of the Maxwell–Boltzmann inner energy distribution at the current experimental conditions, T = 338 to 343 K
PDF
Album
Supp Info
Full Research Paper
Published 14 Feb 2018

Electron interaction with copper(II) carboxylate compounds

  • Michal Lacko,
  • Peter Papp,
  • Iwona B. Szymańska,
  • Edward Szłyk and
  • Štefan Matejčík

Beilstein J. Nanotechnol. 2018, 9, 384–398, doi:10.3762/bjnano.9.38

Graphical Abstract
  • electron ionization (EI), dissociative ionization (DI) [17][18][19] processes. Their kinetic energy is only a few eV, with energy distribution determined by the type of wafer and energy of primary beam [20][21]. Thorman et al. have compared gas phase and surface data on low energy electron interactions
PDF
Album
Full Research Paper
Published 01 Feb 2018

Response under low-energy electron irradiation of a thin film of a potential copper precursor for focused electron beam induced deposition (FEBID)

  • Leo Sala,
  • Iwona B. Szymańska,
  • Céline Dablemont,
  • Anne Lafosse and
  • Lionel Amiaud

Beilstein J. Nanotechnol. 2018, 9, 57–65, doi:10.3762/bjnano.9.8

Graphical Abstract
  • dependence on the energy is more structured in condensed phase, with three maxima at 3, 5 and 9 eV for the F− desorption from condensed C2F6. Here, the 1.5 eV peak dominates the ESD curves for both CF3 and CF3CF2 desorption in the low-energy range. Considering the energy distribution of the secondary
  • importance under FEBID conditions, considering that the energy distribution for secondary electrons emitted in the direct vicinity of the irradiation spot strongly peaks in the range of 1–5 eV, and can take part in the whole dissociation process. The effective cross section for CF3 release from the complex
PDF
Album
Full Research Paper
Published 05 Jan 2018

Interactions of low-energy electrons with the FEBID precursor chromium hexacarbonyl (Cr(CO)6)

  • Jusuf M. Khreis,
  • João Ameixa,
  • Filipe Ferreira da Silva and
  • Stephan Denifl

Beilstein J. Nanotechnol. 2017, 8, 2583–2590, doi:10.3762/bjnano.8.258

Graphical Abstract
  • the desired metal, with the formation of non-defined deposits on the surface. When high-energy electrons interact with the surface, a cascade of low-energy electrons (LEE) and backscattered electrons are generated. Many chemical reactions can be triggered by those secondary electrons with an energy
  • distribution characterised by a substantial fraction close to the ionization energy of FEBID precursors, peaking well below 10 eV and extending with appreciable intensities down to 0 eV [4]. The quality of the formed nanostructures is controlled and influenced by the interactions of the secondary and
PDF
Album
Full Research Paper
Published 04 Dec 2017

Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes

  • Sascha Koch,
  • Christopher D. Kaiser,
  • Paul Penner,
  • Michael Barclay,
  • Lena Frommeyer,
  • Daniel Emmrich,
  • Patrick Stohmann,
  • Tarek Abu-Husein,
  • Andreas Terfort,
  • D. Howard Fairbrother,
  • Oddur Ingólfsson and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2017, 8, 2562–2571, doi:10.3762/bjnano.8.256

Graphical Abstract
  • ). The cross-linking may be induced directly by the primary electrons, where electron exposure is used in the cross-linking step. However, as mentioned above, backscattered and secondary electrons may also play a considerable role [18]. Typically, the energy distribution of such secondary electron peaks
  • (Figure 1), however, can be traced back to the internal energy distribution in these molecules at the experimental temperature, that is, the formation of Cl− and Br− below their thermochemical threshold is attributed to the high energy tail of the respective Maxwell–Boltzmann distribution of internal
  •  1, must thus be attributed to the high energy tail of the internal energy distribution of the respective biphenyls at the current experimental temperature. Comparing the relative electron dose dependence of the dehalogenation process in the SAMs (Figure 2) and the relative cross sections for this
PDF
Album
Full Research Paper
Published 30 Nov 2017

Electron beam induced deposition of silacyclohexane and dichlorosilacyclohexane: the role of dissociative ionization and dissociative electron attachment in the deposition process

  • Ragesh Kumar T P,
  • Sangeetha Hari,
  • Krishna K Damodaran,
  • Oddur Ingólfsson and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2017, 8, 2376–2388, doi:10.3762/bjnano.8.237

Graphical Abstract
  • , generating a flux of secondary electrons on the surface of objects with high aspect ratio as these are grown [8][9]. The energy distribution of the secondary electrons produced depends largely on the nature of the substrate [10][11], but also on the primary electron energy. However, it normally has similar
PDF
Album
Full Research Paper
Published 10 Nov 2017

Comprehensive investigation of the electronic excitation of W(CO)6 by photoabsorption and theoretical analysis in the energy region from 3.9 to 10.8 eV

  • Mónica Mendes,
  • Khrystyna Regeta,
  • Filipe Ferreira da Silva,
  • Nykola C. Jones,
  • Søren Vrønning Hoffmann,
  • Gustavo García,
  • Chantal Daniel and
  • Paulo Limão-Vieira

Beilstein J. Nanotechnol. 2017, 8, 2208–2218, doi:10.3762/bjnano.8.220

Graphical Abstract
  • statistical bond breaking, the former reminiscent of a repulsive dissociation character by the translational energy distribution of the first CO ligand, the latter correctly modelled by statistical product energy distributions [33]. High-resolution VUV photoabsorption spectrum of W(CO)6 in the photon energy
PDF
Album
Supp Info
Full Research Paper
Published 23 Oct 2017

Advances and challenges in the field of plasma polymer nanoparticles

  • Andrei Choukourov,
  • Pavel Pleskunov,
  • Daniil Nikitin,
  • Valerii Titov,
  • Artem Shelemin,
  • Mykhailo Vaidulych,
  • Anna Kuzminova,
  • Pavel Solař,
  • Jan Hanuš,
  • Jaroslav Kousal,
  • Ondřej Kylián,
  • Danka Slavínská and
  • Hynek Biederman

Beilstein J. Nanotechnol. 2017, 8, 2002–2014, doi:10.3762/bjnano.8.200

Graphical Abstract
  • correlations between the properties of the plasma (energy distribution functions, plasma density, floating and plasma potential), the gas phase composition and the gas flow dynamics. Therefore, future research work should join efforts of scientists with different expertise to cope effectively with these
PDF
Album
Review
Published 25 Sep 2017

Nonconservative current-driven dynamics: beyond the nanoscale

  • Brian Cunningham,
  • Tchavdar N. Todorov and
  • Daniel Dundas

Beilstein J. Nanotechnol. 2015, 6, 2140–2147, doi:10.3762/bjnano.6.219

Graphical Abstract
  • -time Fourier transform on the ion trajectories (t) from the dynamical simulations and examine the evolution of the energy distribution across the phonon band. The Fourier transform uses a Blackman window, effectively suppressing data outside a particular time interval, while ensuring the data remains
PDF
Album
Full Research Paper
Published 13 Nov 2015

The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

  • Rachel M. Thorman,
  • Ragesh Kumar T. P.,
  • D. Howard Fairbrother and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2015, 6, 1904–1926, doi:10.3762/bjnano.6.194

Graphical Abstract
  • surface of their sides (Figure 2b). In general, the SE energy distribution extends with appreciable intensities down to 0 eV, peaks well below 10 eV, and has a higher-energy tail stretching well above 50 eV. The actual form (peak position and width) of the SE energy distribution depends largely on the
  • general, the SE yield reaches a distinct maximum well below 1 keV PE energy, before decreasing rapidly again, as is discussed in more detail in context to the commonly used FEBID precursor MeCpPtMe3 in section 4.1. Figure 3 shows the experimentally determined SE energy distribution for 400 eV PEs
  • 5 eV [9]. Hence, it is clear that deposit formation in FEBID will be governed by a convolution of the efficiencies of the relevant electron-stimulated processes occurring at the surface and the SE energy distribution at the surface of the substrate. In the case of three-dimensional structures this
PDF
Album
Review
Published 16 Sep 2015

Continuum models of focused electron beam induced processing

  • Milos Toth,
  • Charlene Lobo,
  • Vinzenz Friedli,
  • Aleksandra Szkudlarek and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1518–1540, doi:10.3762/bjnano.6.157

Graphical Abstract
  • contributions from primary, backscattered and secondary electrons, each of which has a unique spatial profile and a unique energy distribution [19]. Gas flow from a capillary-style gas injection system (GIS) FEBIP precursor gases are injected into a specimen chamber using one of two methods. In the first method
PDF
Album
Review
Published 14 Jul 2015
Other Beilstein-Institut Open Science Activities